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Karush-Kuhn-Tucker Condition

» Consider the following problem:
minimize f(a
subject to h(x) =0
g(x) <0
where fR" >R, h:R" -=R™, m<n ,and g:R"—= R,

» Definition 21.1. An inequality constraint ¢;(x) <0 issaid
tobeactiveat =* If g;(z")=0 .Itisinactiveat z* if g;(z*) <0

» Definition 21.2. Let «* satisfy h(z*) =0, g(z*) <0, and let
J(z*, be the index set of active inequality constraints

J(x*) £ {j: gj(x*) = 0}

Then, we say that =+ isaregular point if the vectors
Vhi(z),vg;(x*),1 <i<m,jec J(z*) arelinearly independent.
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Karush-Kuhn-Tucker Condition

» We now prove afirst-order necessary condition for a point
to be alocal minimizer. We call this condition the Karush-
Kuhn-Tucker (KKT) condition (or Kuhn-Tucker condition)

» Theorem 21.1. Karush-Kuhn-Tucker Theorem. Let
f.h.geC'.Let z- bearegular point and alocal minimizer
for the problem of minimizing 7 subject to h(z)=0,g(x) <0
Then, thereexists A e R and p* € R? such that:

1. >0
2. Df(z*) + X' Dh(z*) + ' Dg(z*) = 07
3. wg(x*)=0



Karush-Kuhn-Tucker Condition

» InTheorem 21.1, werefer to A* as the Lagrange multiplier
vector and #* asthe Karush-Kuhn-Tucker (KKT)
multiplier vector. We refer to their components as
Lagrange multipliers and KKT multipliers, respectively.

» Observethat u: > (by condition 1) and g;(z*) < 0.

Therefore, the condition
ug(x’) = uigi(x*) + - + ulgy(x*) =0

Impliesthat if g;(z*) <0, then w:=0;thatis, foral j ¢ Jj(z"
we have .2 =0 . In other words, the KKT multipliers #;
corresponding to inactive constraints are zero. The other
KKT multipliers, #j, j € J(z*), are nonnegative; they may
or may not be equal to zero.



Example 21.1

» A graphical illustration of the KKT theorem isgivenin
Figure 21.1. In this two-dimensional example, we have
only inequality constraints g;(z*) <0, j =1,2,3. Note that
the point z* in the figureisindeed a minimizer.

» Figure21.1 \

Feasible set "Vg1(X’)

9<=0 —

f=C2

f=C3

C1<CQ<C3



Example 21.1

» Theconstraint gs(z) <0 Isinactive: gs(z*) <0; hence w3 =0

By the KKT theorem, we have
V) + 11V u(x") + 5 7 ga(x) = 0

or, equivaently, vf(z*)=—ui v al@*) - 1 v gx)
where > 0, 5 > 0

» Itiseasy to interpret the KKT condition graphically for
this example. Specifically, we can see from Figure 21.1
that v f(=*) must be alinear combination of the vectors
- valz') and — v g(x*) with positive coefficients. Thisis
reflected exactly in the equation above, where the
coefficients u7, iy arethe KKT multipliers.



Karush-Kuhn-Tucker Condition

» We apply the KKT condition in the same way that we
apply any necessary condition. Specifically, we search for
points satisfying the KKT condition and treat these points
as candidate minimizers. To summarize, the KKT
condition consists of five parts (three equations and two
Inequalities):

1. pu >0
2. Df(x

)+ *TDh< )+ w'Dg(a*) =07
plg(a) =

SANE I
>
H%

=0
g(xz*) <0



Example 21.2

» Consider the circuit in Figure 21.2. Formulate and solve
the KKT condition for the following problems.

1. Find the value of theresistor R > 0 such that the power
absorbed by this resistor is maximized.

2. Find the value of theresistor R > 0 such that the power
delivered to the 10 — Q resistor is maximized.

» Figure21.2

20V — §10 Q




Example 21.2

» The power absorbed by theresistor r Isp =i’k , where

i =g - Theoptimization probl&r}% can be represented as

(10 + R)?
subject to — R <0

» The derivative of the objective function is

minimize —

400(10 + R)* — 800R(10+ R)  400(10 — R)
B (10 + R)* 10+ R)?
Thus, the KKT conditionis
400(10 — R)
B

>0 puR=0 —-R<0



Example 21.2

» We consider two cases. In the first case, supposethat ;. > 0
Then, R=0.Butthiscontradictsthe first condition above.
Now supposethat . =0 . Then, by thefirst condition, we
have Rr=10. Therefore, the only solution to the KKT
conditionis R=10,u =0
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Example 21.2

» The power absorbed by the 10 - © resistor is p = i%10,
where i = 20/(10 + R). The optimization problem can be

4000
represented as minimize — SUENE

subject to — R <0

8000

The derivative of the objective function is
10 + R)?

Thus, the KKT condition Is
3000

10+ Rr? "
>0 puR=0 —R<0

= ()
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Example 21.2

» Asbefore, we consider two cases. In thefirst case,
supposethat 1 >0.Then, R=0,whichisfeasble. For the
second case, supposethat ;=0 . But this contradicts the
first condition. Therefore, the only solution to the KKT
conditionis R=0,u=0
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Karush-Kuhn-Tucker Condition

» In the case when the objective function is to be maximized,
that is, when the optimization problem has the form
maximize f(x)
subject to h(x) =0
g(z) <0
The KKT condition can be written as
1. >0
2. —Df(x*) + X' Dh(z*) + p*' Dg(x*) = 0!
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Karush-Kuhn-Tucker Condition

» The aboveis easily derived by converting the
maximization problem above into a minimization problem,
by multiplying the objective function by -1. It can further
rewritten as

1. # =<0

2. Df(z*) + XTDh(z*) + p*' Dg(x*) = 01
3. uig(*) =0

4, h{z*) =0

5 g(x’) <0

» The form shown above is obtained from the preceding one
by changing thesignsof n* and x* and multiplying
condition 2 by -1.
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Karush-Kuhn-Tucker Condition

» We can smply derive the KKT condition for the case
when the inequality constraint is of the form g(z) > 0.
Specifically, consider the problem

minimize f(a
subject to h(x) =

g(z) >0
» We multiply the inequality constraint function by -1 to

obtan —g(z) <0, Thus, the KKT condition for thiscaseis
1. up*>0

Df(x

)+ X‘TDh( *) — w" Dg(x*) = 0"
M*Tg(a3 ) =

ok~ 0N
E

— 0
g(x *)20
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Karush-Kuhn-Tucker Condition

» Changing the sign of n* as before, we obtain
1. p <0
2. Df(z*) + XNI'Dh(z*) + p*' Dg(z*) = 0!
3. ug(x") =0
4, h(x*)=0
5. 9(x*) >0

» Fortheproblem  maximize f(z)
subject to h(x) =0

g(x) >0

the KKT condition is exactly the same asin Theorem 21.1,
except for the reversal of the inequality constraint.
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Example 21.3

» In Figure 21.3, the two points z; and =, arefeasible
points; that Is, g(z;) >0 and g(=2) > 0, and they satisfy the
KKT condition. Thepoint ;, iIsamaximizer. The KKT
condition for this point (with KKT multiplier ;) Is

1. 1120

2. Vfx) + v glx) =0 Vf(X4)

3. mg(x) =0
4. g(x1) >0

» Figure 21.3

f=C1



Example 21.3

» Thepoint z, iIsaminimizer of /. The KKT condition for
this point (with KKT multiplier u, ) is
1. 42 <0
2. Vf(®2) + p2 7 g(a2) = 0
3. m2g(x2) =0
4., g(xzz) >0
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Example21.4

» Consider the problem
minimize f(x1,xs)
subject to x1, 29 > 0

where f(zy, z9) = 22 + a2 + x129 — 327
The KKT condition for this problem is
1. p= [, p]" <0
2. Df(x) +ul =0
3. paz=0
4, >0
» Wehave Df(x) = 221 + 22 — 3,21 + 225 . ThiSgives
201 + X9+ 41 =3

T1+ 229 4 o = 0

p1r1 + poxg =0
19



Example21.4

» We now have four variables, three equations, and the
Inequality constraints on each variable. To find a solution
(x*, u*), wefirsttry i =0,25=0,whichgives z;=32 ;=2
The above satisfies all the KKT and feasibility conditions.

» Inasimilar fashion, wecantry p;=0,z; =0, which gives
z5 = 0,u; =3 . Thispoint clearly violates the nonpositivity
constraintson ;.

» The feasible point above satisfying the KKT condition is
only a candidate for aminimizer. However, thereis no
guarantee that the point is indeed a minimizer, because the
KKT condition is, in general, only necessary. A sufficient
condition for apoint to be aminimizer is given as follows.
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Karush-Kuhn-Tucker Condition

» Example 21.4 isaspecial case of amore general problem
of the form minimize f(a
subject to x > 0

The KKT condition for this problem has the form
n<0 plz =
vflx)+pu=0 x>0

» For the above, we can eliminate .. to obtain

viE) =0 <
x' 7 flx) =0

» Some possible pointsin r? that satisfy these conditions
are depicted in Figure 21.4.
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Karush-Kuhn-Tucker Condition

X cy<Cy X" ¢

/ Cy<Cp
Vi(x*)=0 \

(
?

f=C2
\ Cq<C2<C3
\/ o




Second-Order Conditions

» We can aso give second-order necessary and sufficient
conditions for extremum problems involving inequality
constraints. Define the following matrix:

L(z, A, p) = F(x) + | AH ()] + [nG(x)
where F(z) iIsthe Hessian matrix of f at «, and the
notation [\H(xz) represents
AH (z)] = \\H () + - + A H ()
as before. Similarly, the notation [uG(x) represents
uG(x)| = mGi(x) + - + Gy
where G, (z) Isthe Hessian of ¢, at =, given by
i 0 i 0° gi |

Gk(a:) =
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Second-Order Conditions

» In the following theorem, we use
T(x*)={y e R": Dh(z*)y =0, Dyg,(x*)y =0,5 € J(x*)}
that is, the tangent space to the surface defined by active
constraints.

» Theorem 21.2. Second-Order Necessary Conditions. Let «*
bealocal minimizer of f:R" — R subject to h(z) =0,g(z) <0
h:R"—=R" m<ng:R"—=R’' and f,h,geC? Supposethat z*
Isregular. Then, thereexist A* ¢ R and p* € R? such that

1. u*>0,Df(x*) + X" Dh(z*) + p*' Dg(x*) = 0", u*' g(z*) = 0
2. Foral yeT(z*) wehave y"L(z*, \*, pu*)y >0
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Second-Order Conditions

» We now state the second-order sufficient conditions for
extremum problems involving inequality constraints. In
the formulation of the result, we use the following set

T(x*,p*) = {y : Dh(z*)y = 0, Dg;(xz")y = 0,5 € J(z*, n*)}
where Ja*, u*) = {i, g;(x*) = 0, 7 > 0}. Note that j(z* p*) 1Sa
subset of J(z* . This, inturn, impliesthat 7(z* 1S a subset
of T(z* u*
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Second-Order Conditions

» Theorem 21.3. Second-Order Sufficient Conditions.
Supposethat f,h,g € ¢*> and there exist afeasible point
z* ¢ R" and vectors Ax* e R” and p* € R? such that
1. w*>0,Df(x*) + XTDh(x*) + p*T Dg(x*) = 0, u*Tg(x*) = 0
2. Foral y e T((U*) w),y #0,wehave y'L(z* X', u*)y > 0
Then, z* Isastrict local minimizer of f subject to h(x) =0,g(x) <0
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Example 21.5

» Consider the following problem:

minimize x1x-
subject to 1 + 29 > 2 T9 > T

a. Write down the KKT condition for this problem

Write f(x) = z129, g1(x) =2 — 21 — 22, and g2(x) = 21 — 2. The
KKT condition is

To — 1+ po =0,

Ty — iy — p2 =0,
/L1(2—$1—$2)—|—M2(SB1—$2) :O:
pi1, pr2 = 0,

2—x1— 19 <0,

r1— To <0
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T(x*)={y € R": Dh(z*)y =0, Dg;(x*)y = 0,5 € J(z*)}

Example 21.5

28

b. Find all points (and KKT multipliers) satisfying the KKT
condition. In each case, determine if the point is regular.

It iseasy to check that ; # 0, us # 0. Thisleaves uswith only
one solution to the KKT condition: zi=z5=1,ui=1,u5 =20
For this point we have Dg,(xz*) = [-1,—1 and Dg,(z*) = [1, —1]
Hence, =* isregular.

c. Find al pointsin part b that also satisfy the SONC.

Both constraints are active. Hence, because z* isregular,
T(x*) ={0}. Thisimplies that the SONC is satisfied.



Example 21.5
d. Find all pointsin part c that also satisfy the SOSC.

Now . 01
L)~ || |

Moreover, T(z*, ) ={y:[-1, -1y =0} ={y:y = —p} . PICK
y =[1,-1|" € T(a*, p)- Wehave y"L(z*, p*)y = —2 < ¢, which
means that the SOSC fails.

e. Find all pointsin part c that are local minimizers.

In fact, the point £* isnot alocal minimizer. To seethis, draw a
picture of the constraint set and level sets of the objective
function. Moving in the feasible direction [1,1]7 , the objective
function increases; but moving in the feasible direction [—1, 1]¢
the objective function decreases.
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Example 21.6

» Wewishto minimize f(x) = (z; — 1)> + 2, — 2 Subject to
h(x) =29 —21—1=0
g(x) =21+ 22 —2 <0
Foral = <R?,wehave Dh(z)=[-1,1, Dg(x)=[1,1
Thus, vh(z) and vg(z) arelinearly independent and
hence all feasible points are regular. We first write the
KKT condition. Because Df(z) = [22; — 2, 1]
Df(x) + ADh(z) + pDg(x) = 221 —2 = X+ p, 1+ X+ p] = 0!
p(ry + 29 —2) =0
p =0,

1132—5(31—1:0
T1+ 20 —2 <0

)
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Example 21.6

» To find points that satisfy the conditions above, we first
try ©>0,whichimpliesthat =, +2,—2=0. Thus, we are
faced with a system of four linear equations

25131—2—)\‘{-#:07
l+A+p=0,
332—331—1:0,
$1—|—332—2:0

Solving the system of equations above, we obtain

S N )
331_27332_27 — y b=

However, the above is not alegitimate solution to the
KKT condition, because we obtained , =0, which
contradicts the assumption that , ~ ¢
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Example 21.6

» Inthe second try, we assume that . =0 . Thus, we haveto

solve the system of equations
2331 —2— A= 0,
I+ A=0,
ro — T1 — 1=0

and the solutions must satisfy g(z1,22) = 21+ 22 =2 <0

» Solving the equations above, we obtain

1 3
xl 27x2 27

Notethat = =[1/2,3/2]" satisfiesthe constrant g(z*) <o .
Thepoint z+ satisfying the KKT necessary condition is
therefore the candidate for being a minimizer.
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Example 21.6

» We now verify if z* =[1/2,3/2]", x = —1, u* = 0, Stisfy the
second-order sufficient conditions. For this, we form the
matrix Lz, A\, 1) = F(a®) + NH(z") + ' Gz

R
_[20
00

We then find the subspace 7(z*, ;1*) = {y : Dh(z*)y = 0}
Note that because . =0, the active constraint g(z*) = 0
does not enter the computation of 7(z*, .*'. Note also that
Inthiscase, T(z*) = {0}. We have

T(a p) ={y:[-1, 1y = 0} = {la,a]" - a € R}
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Example 21.6

» We then check for positive definiteness of L(x*, \*, *) on
T(z*, 1 . We have

2 0| |a
T X\ k% 2
Yy L(QZ 7)‘ y M )y — [CL,CL] [O O] [a] = 2a

Thus, L(z* )\ u*) Ispodgitivedefiniteon 7z, . Observe
that L(z* )\, 1) 1S, In fact, only positive semidefinite on R?

» By the second-order sufficient conditions, we conclude
that =+ =[1/2,3/2]T iIsastrict local minimizer.
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